Mat. Res. Bull. Vol. 2, pp.999-1008, 1967. Pergamon Press, Inc. Printed in the United States.

STABILITY OF CrO2 AT HIGH PRESSURES AND TEMPERATURES IN THE "BELT" APPARATUS

R. C. DeVries General Electric Research and Development Center Schenectady, New York

(Received August 29, 1967; Communicated by R. Roy)

ABSTRACT

An investigation of the decomposition of CrO_2 to Cr_2O_3 from 800° to 1580° C and 15 to 65 kb was made in the "belt" apparatus. CrO_2 can be held for at least 10 minutes without decomposition at temperatures to above 1500°C at pressures of 60 to 65 kb. These results indicate the feasibility of reacting other oxides with CrO_2 for the formation of new compounds.

Introduction

In order to carry out reactions at high temperatures for the synthesis of new compounds containing CrO_2 , it is necessary to contain this material at high pressures to prevent the decomposition to Cr_2O_3 . Since the "belt" apparatus is a convenient high-pressure unit for these kinds of reactions, a study was made to determine the stability limits of CrO_2 in that apparatus.

Kubota's original investigation (1) of the Cr-O system to pressures of about 1 kb and temperatures of about 600° C appears to have formed the basis for the selection of the 400° to 500° C